Utilities
cvfromci
ClinicalTrialUtilities.cvfromci
— Functioncvfromci(;alpha = 0.05, theta1 = 0.8, theta2 = 1.25, n, design=:d2x2, mso=false, cvms=false)::AbstractFloat
CV from bioequivalence confidence inerval.
alpha - Alpha (o < alpha < 1) (default=0.05);
beta - Beta (o < beta < 1) (default=0.2); power = 1 - beta;
theta1 - Lower Level (default=0.8);
theta2 - Upper level (default=1.25);
n - subject n;
design - trial design;
- :parallel
- :d2x2 (default)
- :d2x2x4
- :d2x4x4
- :d2x3x3
- :d2x4x2
- :d3x3
- :d3x6x3
mso
Calculate MS only
- false(default)
- true
Deprecated:
cvms Calculate CV and MS
- false(default)
- true
cvfromsd
ClinicalTrialUtilities.cvfromsd
— Functioncvfromsd(σ::Real)::AbstractFloat
CV from variance.
cvfromvar
ClinicalTrialUtilities.cvfromvar
— Functioncvfromvar(σ²::Real)::AbstractFloat
CV from variance.
sdfromcv
ClinicalTrialUtilities.sdfromcv
— Functionsdfromcv(cv::Real)::AbstractFloat
LnSD from CV.
varfromcv
ClinicalTrialUtilities.varfromcv
— Functionvarfromcv(cv::Real)::AbstractFloat
LnVariance from CV.
pooledcv
ClinicalTrialUtilities.pooledcv
— Functionpooledcv(data; cv=:cv, df=:df, alpha=0.05, returncv=true)
Pooled CV from multiple sources.
data - data with CV data
cv::Symbol - CV column
df::Symbol - DF column
alpha - Alpha for var/cv confidence interval.
returncv - Return CV or var:
- true - return cv
- false - return var
Return tuple: (lower, upper, estimate).
Example:
data = DataFrame(cv = Float64[], df = Int[])
push!(data, (0.12, 12))
push!(data, (0.2, 20))
push!(data, (0.25, 30))
ci = ClinicalTrialUtilities.pooledcv(data; cv="cv", df="df")
println("Lower: ", ci[1])
println("Upper: ", ci[2])
println("Estimate: ", ci[3])
Lower: 0.18145259424967664
Upper: 0.2609307413637307
Estimate: 0.21393949168210136
pooledcv(cv::Vector, df::Vector; alpha = 0.05, returncv = true)
Pooled CV from multiple sources.
cv - CV Vector
df - DF Vector
alpha - Alpha for var/cv confidence interval.
returncv - Return CV or var:
- true - return cv
- false - return var
pooledcv(cv::Vector, n::Vector, design::Vector; alpha = 0.05, returncv = true)
Pooled CV from multiple sources.
cv - CV Vector
n - n Vector
design - design Vector
alpha - Alpha for var/cv confidence interval.
returncv - Return CV or var:
- true - return cv
- false - return var