API
MetidaBioeq.bioequivalence
MetidaBioeq.bioequivalence — Functionbioequivalence(data;
vars = nothing,
subject::Union{String, Symbol},
period::Union{String, Symbol, Nothing} = nothing,
formulation::Union{String, Symbol},
sequence::Union{String, Symbol, Nothing} = nothing,
stage::Union{String, Symbol, Nothing} = nothing,
reference::Union{String, Symbol, Nothing} = nothing,
design::Union{String, Symbol, Nothing} = nothing,
io::IO = stdout,
seqcheck::Bool = true,
designcheck::Bool = true,
dropcheck::Bool = true,
dropmissingsubj = false,
dropincompletesubj = false,
info::Bool = true,
warns::Bool = true,
autoseq::Bool = false,
logt::Bool = true)vars- variabel's column(s);subject- subject's column;period- period's column;formulation- formulation's column;sequence-sequence's column;stage- stage's column;reference- reference value forformulationcolumn;design- design: "parallel", "2X2", "2X2X2", "2X2X4", ets. (formulations X sequences X periods);seqcheck- check sequencs;designcheck- check design correctness;dropcheck- dropuot check;dropmissingsubj- drop subjects with missing data;dropincompletesubj- drop subjects with no full sequence data (work only ifseqcheck= true);info- show information;warns- show warnings;autoseq- try to make sequence collumn;logt- iftrue(default) data is already log-transformed, elselog()will be used.
If dropmissingsubj or dropincompletesubj used - copy of the data will be filtered.
MetidaBioeq.estimate
MetidaBioeq.estimate — Functionestimate(be; estimator = "auto", method = "auto", supresswarn = false)method - Model settings.
- if
method == "auto"than methodAused for "2X2" and "2X2X2" designes, methodPfor "parallel" design and methodBfor any other.
Methods:
Ausing GLM and model@formula(var ~ formulation + period + sequence + subject)Busing MixedModels and model@formula(var ~ formulation + period + sequence + (1|subject))or Metida and model@lmmformula(v ~ formulation + period + sequence, random = 1|subject:SI)Cusing Metida and model@lmmformula(v ~ formulation + period + sequence, random = formulation|subject:CSH, repeated = formulation|subject:DIAG)Pusing GLM and model@formula(var ~ formulation)
estimator - Estimator settings.
- if
estimator == "auto"than GLM used for "parallel" design; for "2X2" design used GLM if no droputs and MixedModels ifdropout == true; for other designes with methodCMetida used and MixedModel for other cases.
Estimators:
- "glm" for GLM (https://juliastats.org/GLM.jl/stable/)
- "mm" for MixedModels (https://juliastats.org/MixedModels.jl/stable/)
- "met" for Metida (https://pharmcat.github.io/Metida.jl/stable/)
Other autosettings:
If design is "parallel" estimator set as "glm" and method as "P".
If design is "2X2" and method is "P" or "C" than if estimator == "glm" method set as "A" and "B" for other estimators.
If design not "parallel" or "2X2":
if method not "A", "B" or "C" than set as "A" for "glm" ann as B for other estimators;
if estimator == "glm" and method == "B" than estimator set as "mm", if estimator == "glm" or "mm" and method == "C" than estimator set as "met".
Reference:
EMA: GUIDELINE ON THE INVESTIGATION OF BIOEQUIVALENCE
EMA: GUIDELINE ON THE INVESTIGATION OF BIOEQUIVALENCE, Annex I
MetidaBioeq.result
MetidaBioeq.result — Functionresult(beres::BEResults)Returns dataframe with bioequivalence results.
MetidaBioeq.makeseq
MetidaBioeq.makeseq — Functionmakeseq(data;
subject = :subject,
period = :period,
formulation = :formulation)Make sequence vector from data and subject, period, formulation columns.
MetidaBase
See https://github.com/PharmCat/MetidaBase.jl