SASLMR
Documentation for SASLMR.
This program comes with absolutely no warranty. No liability is accepted for any loss and risk to public health resulting from use of this software.
SASLMR.jl is Julia package, it wrapp sasLM
package for R project for ANOVA type I/II/III.
Exported functions: aov1
, aov2
, aov3
, aov
, ciest
, rantest
Install:
import Pkg; Pkg.add(url="https://github.com/PharmCat/SASLMR.jl.git")
Note:
SASLMR.jl doesn't install sasLM
. To use SASLMR.jl first install sasLM
in your R project enviroment. Check that R project is included in PATH
, and check that RCall.jl builded successfully.
Using:
using SASLMR
using StatsModels, StatsBase, DataFrames
# data (DataFrame)
bedf = SASLMR.bedata()
# run ANOVA
beaov = SASLMR.aov(@formula(CMAX ~ PRD + TRT + SEQ + SUBJ&SEQ), bedf; beta=true, resid=true, type = "III")
# get DF
beaovdf = DataFrame(beaov.ct)
# or get coeftable
ct = coeftable(beaov)
For more details see:
https://cran.r-project.org/web/packages/sasLM/sasLM.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781810/
SASLMR.jl not cover all sasLM
functionality... so... wellcome any PR for extending.
SASLMR.aov
SASLMR.aov1
SASLMR.aov2
SASLMR.aov3
SASLMR.bedata
SASLMR.ciest
SASLMR.rantest
StatsAPI.coeftable
SASLMR.aov
— Methodaov(f, d; beta=true, resid=true, type = "III")
Same as aov1
, aov2
, aov3
.
Keyword type
: ANOVA SS Type I/II/III (III by default).
SASLMR.aov1
— Methodaov1(f, d; beta=true, resid=true)
Function:
aov1(Formula, Data, BETA=FALSE, Resid=FALSE)
ANOVA with Type I SS.
Arguments:
Formula a conventional formula for a linear model.
Data a data.frame to be analyzed
BETA if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to SOLUTION option of SAS PROC GLM
Resid if TRUE, fitted values (y hat) and residuals will be returned
Details
It performs the core function of SAS PROC GLM, and returns Type I SS. This accepts continuous independent variables also.
Value
The result table is comparable to that of SAS PROC ANOVA.
Df degree of freedom
Sum Sq sum of square for the set of contrasts
Mean Sq mean square
F value F value for the F distribution
Pr(>F) proability of larger than F value
Next returns are optional.
Parameter Parameter table with standard error, t value, p value. TRUE is 1, and FALSE is 0 in the Estimable column. This is returned only with BETA=TRUE option.
Fitted Fitted value or y hat. This is returned only with Resid=TRUE option.
Residual Weigthed residuals. This is returned only with Resid=TRUE option.
SASLMR.aov2
— Methodaov2(f, d; beta=true, resid=true)
Function:
aov2(Formula, Data, BETA=FALSE, Resid=FALSE)
ANOVA with Type II SS.
Description see aov1
.
SASLMR.aov3
— Methodaov3(f, d; beta=true, resid=true)
Function:
aov3(Formula, Data, BETA=FALSE, Resid=FALSE)
ANOVA with Type III SS.
Description see aov1
.
SASLMR.bedata
— Methodbedata()
Return BEdata (Contains Cmax data from a real bioequivalence study).
SASLMR.ciest
— Methodciest(f, d, term, contrast; level = 0.95, est = false)
If est
== true - return estimate table.
CIest(Formula, Data, Term, Contrast, conf.level=0.95)
Get point estimate and its confidence interval with given contrast and alpha value using t distribution.
SASLMR.rantest
— Methodrantest(f, d, random; type = "III", eps::Float64 = 1e-8)
Hypothesis test of with specified type SS using random effects as error terms. This corresponds to SAS PROC GLM’s RANDOM /TEST clause
Same as:
RanTest(f, d, Random = "", Type=3, eps=1e-8)
Type can be from 1 to 3. All interaction terms with random factor are regarded as random effects. Here the error term should not be MSE
Returns ANOVA and E(MS) tables with specified type SS.
StatsAPI.coeftable
— MethodStatsBase.coeftable(obj::AOVSumm)